141

3D Transformations and Interpolations Based on Quaternions

Kari Peisa

Abstract

Peisa, Kari (2005). 3D Transformations and Interpolations Based on Quaternions. In
Proceedings of the Algorithmic Information Theory Conference, Vaasa 2005. Pro-
ceedings of the University of Vaasa, Reports 124, 141-152. Eds S.Hassi,V.Keranen,
C.-G. Kallman, M. Laaksonen, and M. Linna.

Quaternion technique has been effectively used in the recent development of com-
puter graphics and game programming. The potential of quaternions as a general
and powerful rotation operator has been widely recognized. Many recent graphics
APIs, for instance Java-3D API and DirectX, provide functions for quaternion oper-
ations. In this paper we provide a mathematical summary and an implementation of
the quaternion algebra and calculus as a set of rewrite rules of Mathematica for four
dimensional vector space over the real number field R. The properties of Mathematica
as a rewrite language are also discussed. By using quaternion technique and symbolic
computation we introduce some general functions that perform various transforma-
tions and interpolations. As an example we show how these functions can be used
for illustrating rotations and curves constructed by using unit quaternions. The mo-
tivation for this paper originates from some obstacles that arose when the add-on
Algebra‘Quaternions‘ package of Mathematica was experimented in connection with
computer graphics.

Kari Peisa, School of Technology, Rovaniem: Polytechnic, E-mail: Kari. Peisa@ramk.fi

Keywords: quaternion, quaternion spline interpolation, computer graphics

1. Implementing the Quaternion Algebra in Mathematica
In this paper we denote quaternion by
(1) quatjw, x,y, zl =wE+ 21+ yJ+ z K,

where the coefficients w, z,y, z € R. Elements E, I, J and K represent unit quaternions

that obey the following Hamilton’s rules

(2) LI = JJ=KK-=1LJLK = —1.

142

These primitive elements are also called imaginary principals according to William
Rowan Hamilton (1805-1865) who invented quaternions when he tried to generalize
the meaning of complex numbers for rotations in the plane to rotations in three di-
mensional space through ordered number triplets with two imaginary components and
one as a real number. However this proved to be impossible and four numbers, that
is quaternions, are needed to specify 3D rotations.

Define qo = quat|wy, g, Yo, 20] and q; = quat|wy,x1,y1,21]. The dot (.) for the

multiplication of quaternions is defined by

(3) do-1 = quat[wow, — ToT1 — YoY1 — 2021,
WoT1 — ToT1 — YoY1 — =01,
WoY1 — To2z1 + YoWi + 201,
woz1 + Toy1 — YoT1 + Zow].

The following definitions complete the four dimensional vector space H over the real
number field R:

(4) qo £ q1 = quat|wg £ wy, xo + 1, Yo £+ Y1, 20 L 21]
(5) dp = quat|wo, —Zo, —Yo, —2o)

(6) norm(qo) = wi + 3 + ya + 23

(7) o' = g3/norm(do)

Multiplication of quaternions is associative and distributes across addition but is not
generally commutative. Scalar multiplication obeys the ordinary componentwise mul-
tiplication and division as with vectors. For the complete presentation of the quater-
nion mathematics the reader is referred to Damm et al (1998).

As Hamilton introduced, quaternions can be represented by
(8> q = w+V,

where w € R is called the real part and v = (z,y,2) € R? is called the vector part
of the quaternion. The set of pure quaternions denoted by H, i.e, quaternions with
real part equal to zero, is isomorphic with the 3D vector space. It is known that the
representation (8) makes it possible also to represent the quaternion product by using

the ordinary dot product and cross product defined for 3D vectors.

9) qo-d1 = WoWi — Vo V] + WoVy + wiVy + Vg X vy

143

It is also known that unit quaternions in the expression (1) can be represented by

using special complex valued Cyyo matrices (10) called Pauli matrices:

o m=(1)1=(69)=0 0) =% 7).

In the matrix representation multiplication (3), addition and subtraction (4) of quater-
nions and also the scalar multiplication obey the standard rules of matrix algebra.
Instead of Csyyo matrices we can also use special real valued Ry, 4 matrices
Mathematica does not include quaternion algebra as standard algebra. There is an
add-on package named Algebra‘Quaternions‘, where the Hamilton’s quaternion al-
gebra is implemented as an extension of the complex number field C. Unfortunately,
some important extracting functions and the algebraic functions defined in this package
do not support symbolic computation. This is a defect for experimenting quaternion
technics in connection with computer graphics.
The basic quaternion algebra (1) - (7) for vector space H with support of symbolic
computations can be implemented in Mathematica quite shortly. The quaternion mul-
tiplication can be defined by three equivalent ways, namely by a vector representation,
a matrix representation and a 4-tuple representation. In the vector representation we
use equation (9) together with the standard operations of 3D vectors of Mathematica.
With the Coyo or Ry 4 matrix representations we can use the built-in matrix algebra
as we explained above.
We introduce here an implementation of the quaternion algebra based on a set of
rewrite rules of Mathematica and using the 4-tuple representation (3) of the quater-
nion product. The rewrite rules in Mathematica are also function definitions. Some
special properties of these definitions are very convenient, especially for programming
mathematical rules of the form

argl op arg2 = definition.
Above the left hand side (lhs) has the internal form oplargl,arg2] and the op is
some, maybe protected, built-in operator or a function. In Mathematica we are able
to associate the definition of a rule either with the head of lhs or with the heads
of the arguments appearing in the level one of [hs. Furthermore, user defined rules
are automatically compiled into a special code based on a form of hashing which
allows for rapid pattern matching. The following rules implement basic arithmetic for

quaternions. Note that the head of [hs of each rule is a protected built-in function:

144

quat /: (Times[quatla_, b_, c_, d_], exp_] /; Head[exp] =!= quat):=
quat[exp a, exp b, exp c, exp dl;
quat /: Plus[quat[w_, x_, y_, z_], q__quat] :=
Thread [Unevaluated[Plus[quat[w, x, y, z], ql], quat];
quat /: Dot[quat[wO_, xO_, yO_, z0_], quat[wl_, x1_, y1_, z1_1] :=
quat [w0 w1l - x0 x1 - yO y1 - z0 z1,
wO x1 + x0 wl + yO z1 - z0 yi,
wO y1 - x0 z1 + yO w1 + z0 x1,
w0 z1 + x0 y1 - yO x1 + 20 wil];

In the scalar multiplication we have the condition not to apply Times to multiplication
of quaternions by accident. The attribute Orderless of the built-in function Times
makes the rule work properly in spite of the order of the arguments of the function.
The head quat is Threaded over the sum for a more efficient computation in long
sums. Function Unevaluated is used to avoid an infinite recursion.

The algebra for quaternion space H is completed by

quat/: Norm[quat([w_, x_, y_, z_1] = w™2 + x"2 + y™2 + z72;
quat/: Conjugatelquatw_, x_, y_, z_]] := quatlw, -x, -y, -z];
quat/: Power[quat[w_, x_, y_, z_1, -1] :=

Conjugate[quat[w, x, y, z]]/Norm[quat(w, x, y, z]];

The following rules define the extracting functions:

quat /: realPart([quatlw_, x_, y_, z_1] := w;
quat /: vectorPart([quatlw_, x_, y_, z_11 := {x, y, z};
quat /: normalizelquatlw_, x_, y_, z_1] :=

quat[w, x, y, z]/Power[Norm[quat[w, x, y, z]], 1/2];

2. Rotations and Unit Quaternions

Let q be a quaternion and v a pure quaternion representing a vector v in the quaternion

space H. It can be proven that quaternion multiplication

(11) q.v.q !

yields always a pure quaternion w of the same norm as v. The expression (11) repre-
sents a rotation of the vector v by the quaternion q. Another fundamental property

of (11) is that a scalar multiplication of the quaternion does not affect the result:

- (@q”) q’ 1
(12) (aq).v.(aq) ™' =aqv.—""% =q.v.—— = q.v.q .
a?|ql lal
Above ||q|| is the quaternion norm (6). From equation (12) it follows that with all
the rotations about the origin in 3-space we need only consider unit quaternions. The

inverse of a unit quaternion q is simply the conjugate quaternion

(13) Q=4

145

Multiplication of two unit quaternions yields always a unit quaternion. Therefore
the quaternion product ¢,.q; defines a new quaternion rotation operator that can be
generalized for the composition of any number of rotations. The fact ||q|| = 1 for unit
quaternions is a constraint over the values of the components. Thus, a rotation about
origin has three degrees of freedom. Furthermore, there is always a unique 6 € [0, 7|

such that each unit quaternion can be represented in the form
(14) q=cosf +sinf @

where 1 is a unit vector. By the quaternion rotation (11) it can be proven that in the
representation (14) vector @ (or u = sinf @) represents the axis of the rotation and
the angle 26 is the rotation angle.
We denote S® = {q¢ € R* | ||g|| = 1} for quaternion rotations. The set of special
orthogonal 3 X 3 matrices that provides a mathematical structure for rotations in 3-
space about an axis through an origin is denoted by SO(3) = {M € R | M.M" =
MT M =1 A detM = 1}. The correspondence between S* and SO(3) is not quite
an isomorphism since unit quaternions ¢ and —q represent the same rotation and
correspond to the same orthogonal matrix. The rotation through an angle — about
an axis —u equals to the rotation through an angle ¢ about an axis u.
(=@).v-(=4)" = q.v.q"

The equation (9) can be used to obtain the elements of the corresponding rotation
matrix from a given unit quaternion § = quat[w, z,y, z] with 2% +3* + 22 = 1 — w?.
rotationMatrix3D[quat [w_,x_,y_,z_]]

{{-1+2wv2+2x"2,2xy

+
{2xy-2wz, -1+2w?2
LQwy+2xz, 2wx+2

wz, 2wy+2xz},
2y°2, 2wzx+ 2y z},
yz, -1 +2w2+ 2z 2}}];

+0o00

For convenience, it is useful to add a new definition to obtain the rotation matrix from

a given rotation angle and a vector that represents the rotation axis:

rotationMatrix3D[ang_, axis_] /; (N[axis] =!= {0., 0.,0.}) :=
Module[{u, w, x, y, 2z},
u = axis/Power[Dot[axis, axis], 1/2];
w =Cos[ang/2];
{x=Sin[ang/2] ul[1]], y=Sin[ang/2] ul[2]], z=Sin[ang/2] ul[3]1]1};
rotationMatrix3D[quat[w, x, y, z]]1];

Next we apply quaternion technique to produce a function that rotates quite a general
graphics objects through a given angle and about any rotation axis. Actually we do
not use quaternion algebra here but only the rotationMatrix3D function. We first

define a general transformation function that applies any given function to desired

146

parts of a graphics object. In this version the desired parts are 3D points {z,y, 2z}
which may appear in special graphics primitives in the complicated structure of a

graphics object.

transform3DObject [grObject_, myTransformation_] :=
grObject /. {Point[p_] :> Point[myTransformation[p]l],
Text[e_, p_] :> Textle, myTransformationl[pl],
head_[list_] /; MemberQ[{Line, Polygon}, head] :>
head [Map [myTransformation, list]]};

Note that the given argument myTransformation must be a function (usually a pure
function). The motivation for the design of this function originates from a numeric

version of the function made by Veikko Keranen from Rovaniemi Polytechnic:

transform3DObject [grObject_, myTransformation_] :=
ReplaceAll [grObject, {x_7NumericQ, y_7NumericQ, z_7NumericQ} ->
myTransformation[{x, y, z}1];

The following functions or their compositions can be given as an argument for applying

matrix multiplication and translation.

linearMapping[matrix_, {x_,y_,z_}] := matrix.{x,y,z};
translate[{x_,y_,z_},{a_,b_,c_}] := {x+a,y+b,z+c};

For example, the pure function linearMapping[matrix,translate[#,vector}]]& as the
argument of the transformation function provides an affine mapping in which the
matrix argument represents a linear transformation and the vector argument repre-
sents a translation.

The general rotation function, that makes rotations about an axis passing through

origin, is defined by

rotateShape [qrObject_,ang_,axis_] := Module[{rotMat},
rotMat = rotationMatrix3D[ang, axis];
transform3D0bject [qrObject,linearMapping[rotMat,#]&]];

The more complicated case of rotating about an axis passing through any given point

is defined shortly:

rotateShape [grObject_,ang_,axis_,pnt_] := Module[{t,r},
t = transform3DObject [grObject,translate[#,-pnt]&];
r = rotateShapel[t,ang,axis];
transform3D0bject [r,translate [#,pnt]l&]];

All the functions defined above can be executed using symbolic arguments, too. If one
wishes to rotate plotted graphics objects, they should be in the Graphics3D represen-
tation form. This form is, for example, returned by the ParametricPlot3D function

(see Figure 1).

147

obj 1=
ParanetricPl ot 3D[{Cos[t], Sin[t], t / (2x), {Hue[0], Thickness[0.01]1}},
{t, 0, 2x}, AxesLabel -» {"x", "y", "z"}, ViewPoint -> {0.8, -1.1, 1.5}
Di spl ayFunction-ldentity];
Show[obj 1, rotateShape[obj1, x/2, {0, O, 1}, {1, 0, 0}] /. {Hue[O] » Hue[O0. 157},
Di spl ayFuncti on -» $Di spl ayFuncti on];

FIGURE 1. Rotating a graphics object

To extract the corresponding quaternion from a matrix representation we need to
reverse the engineering of previous rotationMatrix3D function. However, there are
some square roots with which we should be able to choose either the positive or the
negative root. There is a strategy suggested by Ken Shoemake to solve this problem
numerically. We write here only the solution code and omit the details. The reader is

referred, for example, to Dunn et al. (2002).

fromRotationMatrix3D[m_] :=
Module [{s,biggestIndex,biggestVal,eff},

s[1] = m[[1, 111 + m[[2, 2]] + m[[3, 3]];
s[2] = m[[1, 111 - m[[2, 2]] - m([[3, 3]1];
s[3] = m[[2, 2]] - m[[1, 111 - m[[3, 3]1]1;

s[4] = m[[3, 3]] - m[[1, 111 - m[[2, 2]];
biggestIndex = Ordering[{s[1], s([2], s[3], s[4]1}, -11[[11];
biggestVal = 1/2 Power[1+ s[biggestIndex],1/2];
eff = -1/(4 biggestVal);
Which[biggestIndex == 1, {biggestVal, eff (m[[2, 3]] - m[[3, 2]1]1),
eff (m[[3, 111 - m[[1, 3]1), eff (m([1, 2]] - m[[2, 111D},
biggestIndex == 2, {eff (m[[2, 3]] - m[[3, 2]]1), biggestVal,
eff (m[[1, 211 + m[[2, 111), eff (m[[3, 1]] + m[[1, 311D},
biggestIndex == 3, {eff (m[[3, 111 - m[[1, 311),
eff (m[[1, 211 + m[[2, 1]]), biggestVal,
eff (m([2, 3]] + m[[3, 2]1)},

biggestIndex == 4, {eff (m[[1, 211 - m[[2, 111),
eff (m[[3, 111 + m[[1, 3]1), eff (m[[2, 3]1] + m[[3, 211D,
biggestVall}]l];

3. Quaternion Calculus and Interpolation Algorithms

148

In this section we introduce the calculus of unit quaternions that is needed in two
useful interpolation algorithms for rotations called slerp and squad. We implement the
algebraic functions power, exponential, and the natural logarithm of a unit quaternion
needed in the calculus. We also implement the differentiation rule for a unit quaternion
raised to a power of a real-valued function, which is used in the derivation of squad
algorithm.

Algebraic functions for unit quaternions can be defined by generalizing the Euler’s
identity for complex numbers

S oo 0
exp(6i) = Z oo = Z(—l)" i +1 Z(—l)”M = cosf + i sind

n! 2n)! (2n+1)!

~—~

n=0

to quaternions. We obtain the exponential of a pure quaternion
4 = quat(0, .y, 2] = ||al| 4 = 6

by substituting symbolically 8 ¥ for all occurrences of #i in the power series expansion

of exp(0i) and using the identity ¥.¥ = —1 in the quaternion space H:
(15) exp(0¥) = cosf + ¥ sin 6.

Note that the exponential function returns a unit quaternion. The inverse function,

i.e., the natural logarithm of a unit quaternion ¢, is defined by
(16) In ¢ =1In(cos@ + ¥ sinf) = 07.

One must be very careful when using exponential and logarithm functions as the
corresponding real versions. For example, the real number rule In(pg) = Inp + Ing
does not hold for quaternions because of non-commutative multiplication. The power

of a unit quaternion is defined by
(17) q" = (cosf + ¥ sin)" = exp(0t V) = cos Ot + ¥ sin 6t.
Definitions (15), (16) and (17) can be implemented in Mathematica by the rules

quat /: Explquat[0,x_,y_,z_1] :=
Block[{n = Power[x"2+y~2+z"2,1/2],s},
s = Sin[n]/n;
quat[Cos[n],s x,s y,s z]];
quat /: Loglquat([w_,x_,y_,z_1] :=
Block[{s = ArcCos[w]l}, s pureUnitXYZ[quatl[w,x,y,z]1]1];
quat /: Power[quat[w_,x_,y_,z_],t_] :=
Block[{s = ArcCos[w]},
quat [Cos[t s],0,0,0] + Sin[t s] pureUnitXYZ[quat[w,x,y,z]]];

where the auxiliary function

149

quat /: pureUnitXYZ[quat[w_, x_, y_, z_]1] :=
Block[{s = 1/Power[1-w"2,1/2]1}, quat[0, s x, s y, s z]];

returns a pure unit quaternion whose vector part is the normalized vector part of the
unit quaternion given in the argument.

A unit quaternion q = cosf + sinf 0 can be illustrated as the element of the unit
sphere. The vector part of a unit quaternion represents the direction of the rotation
axis. The length sinf of the vector part is determined by the rotation angle. In
the interpolation of a rotation we need to find the shortest path between two unit
quaternions. The shortest path can be projected onto the unit sphere as the great
arc visualizing rotation matrices SO(3). Spherical interpolation algorithm, slerp in
short, is a mathematical formulation for the shortest path in S® that spans, in fact, the
shortest great arc interpolation on SO(3) (see Dam et al. (1998) pp. 45-46). Function
slerp is defined by

(18) slerp(qu, Az, t) = a1.(45.42)"

Term qj.q2 = cosa + V sina, where « is the angle between ¢; and ¢,. The angle
a is, in fact, the angle of the rotation in 3D space from the orientation ¢; along the
great arc between ¢; and ¢ to the orientation ¢,. Multiplying ¢; by term (G}.42)" =
(cosa + ¥V sina)! = cosat + v sinat, where the argument ¢ varies between 0 and 1,
represents a rotation from the orientation §; along the great arc between ¢; and s
through a fraction of the angle a. Thus slerp(0,qy, q2) = q1 and slerp(1,qy, 42) = Q.
Spherical quadrangle interpolation algorithm, squad in short, produce a spline, i.e., a
cubic interpolation function, which gives a ”smooth” rotation function for given se-
quence of unit quaternions that represent control orientations of a 3D graphics object.
”Smooth” means here the conditions that the spline passes through the control points
and that in the control points two consecutive spline segments are connected smoothly,
i.e., the derivatives are continuous.

Algorithm squad can be defined using slerp in a similar way as slerp uses unit quater-
nions. In squad for each 4 consecutive control points there are two auxiliary control
points for satisfying the derivative condition. With given sequence of N unit quater-

nions {qi,qa, ..., qn, ---, qn } the squad segments can be defined by

(19) Squadn (qn7 Sny Sn+1; An+1, t) =

Sl@?“p(qn, dn+1, t) '(Slerp(qna dn+1, t>*'$lerp(sna Sn+1, t)>2t(17t)7

150

where n = 2,3,..., N — 1, and the auxiliary points are defined by

ln(Q;l'Qn—H) + ln(qﬁl-Qn—l))
1 .

There exists also an efficient code for slerp based on a geometrical derivation, which

Sn = (pn-exp(—

does not use quaternion algebra at all. Algorithms slerp and squad can be implemented

in Mathematica by the following way:

slerplq0_,ql_,t_] := q0.(Conjugate[q0].ql)"t;
squad[q0_,ql_,92_,q93_,t_] := Module[{s1,s2},
s1 = ql.Exp[-(Log[Conjugate[ql].q2] + Logl[Conjugatel[ql]l.q0])/4];

s2 = g2.Exp[-(Log[Conjugate[q2].q3] + LoglConjugatelq2].qll)/4];
slerplslerplql,q2,t],slerplsl,s2,t],2t(1-t)]1];

The correctness of squad can be proved by showing that squad function is continuously
differentiable. The complete proof can be found in Dam et al. (1998) pp. 52-54. The
general differentiation of unit quaternion curves are out of the scope of this paper.
The reader is referred, for example, to the papers of Kim et al. or to Liefke (1998).
However, we introduce here an implementation of the differential formula (see Dam
et al. (1998) p.23) for a unit quaternion raised to a power of a real valued function,

which can be used in the differentiation of the slerp function:

d. X X
(20) Sl = p(1)a’. in(a)

When implementing this rule in Mathematica we have to prevent evaluation of the
given argument. This can be done by the attribute HoldFirst, which specifies that

the first argument of the function is to be maintained in an unevaluated form.

SetAttributes[quatDiff, HoldFirst];
quatDiff [q_"exp_,t_Symbol] :=D[exp, t] Dot[q~exp, Loglql]
/; Head[q]l===quat && FreeQ[q, t];

The condition at the end specifies the rule to be applied only to quaternions whose
components do not include the independent variable.
Finally, we visualize in Figure 2. the slerp and squad functions as the following

parametric plots:

ParametricPlot3D[vectorPart[slerplql,q2,t]]1,{t,0,1}];
ParametricPlot3D[vectorPart[squad[ql,q2,93,q94,t]1],{t,0,1}];

151

FIGURE 2. Slerps between unit quaternions and a squad segment

4. Conclusion and Future Work

We have presented a brief mathematical summary and an implementation of quater-
nion algebra and calculus by using the symbolic computing power of Mathematica.
This work contributes to experimentation of quaternion technique with Mathematica
in various areas of computer graphics, for example, in visualizing 3D curves and sur-
faces (see Hanson (1998)). By modifying the differentiation rule (20) it is possible to
investigate more general quaternion curves which play an important role in modeling

rigid body animations (see Kim et al. (1995) and Liefke (1998)).

Acknowledgements
Special thanks are due to Dr. Veikko Keranen for his cooperation during the process

of programming and for editing this paper in the final phase of writing.

References

Dam, E.B., M. Koch & M. Lillholm (1998). Quaternions, Interpolation and Anima-
tion. Technical Report DIKU-TR-98/5. Department of Computer Science
University of Copenhagen.

Dunn, F. & 1. Parberry (2002). 3D Math Primer for Graphics and Game Develop-
ment. Wordware Publishing, Inc.

Hanson, A.J. (1998). Quaternion Gauss Maps and Optimal Framings of Curves and
Surfaces. Technical Report 518. Computer Science Department of Indiana
University.

152

Kim, M-J., M-S. Kim & S.Y. Shin (1995). A General Construction Scheme for Unit
Quaternion Curves with Simple High Order Derivatives. Computer Graphics
(Annual Conference Series) 29, 369-376.

Kim, M-J., M-S. & and S.Y. Shin (1996). A compact differential formula for the first
derivative of a unit quaternion. Journal of Visualization and Computer Ani-
mation, 7(1), 43-57.

Liefke, H. (1998). Quaternion Calculus for Modeling Rotations in 3D Space.
http:/ /www. cis.upenn. edu/~li

